

DROP-IN (DI) ANCHOR TECHNICAL AND DATA SHEET

TYPICAL APPLICATIONS

- Sprinkler systems
- Concrete formwork
- Pipe supports
- Pre-cast wall inserts
- Cable trays and strut
- Suspended lighting

APPROVALS/LISTINGS

FM (Factory Mutual)File No. 3061529

UL LLC File No. Ex26600

DROP-IN (DI) ANCHOR

DESCRIPTION

The DI Proton anchor is an internally threaded carbon steel anchor, pre-assembled with an internal expansion plug. These anchors are used in solid concrete, concrete blocks and hard stone.

The DI Proton Anchor System is designed for an easier, faster, more secure, full anchor setting.

FEATURES

- Pre-assembled design
- Corrosion-resistant
- Flush DI Anchor Applications
- Visual indication for a properly set anchor
- Faster and safer installation

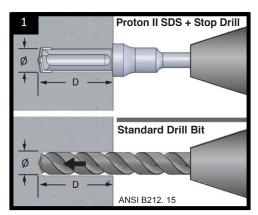
LIMITATIONS

Recommended for cured concrete only (at least 30 days old). Do not use on uncured concrete, light weight concrete brick, or masonry block.

MATERIAL SPECIFICATIONS

Anchor Component	Specification
Anchor body	Carbon steel
Expansion plug	Carbon steel

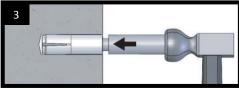
Note: Zinc-plated carbon steel, ASTM B 633 SC1 Type III (Fe/Zn 5)

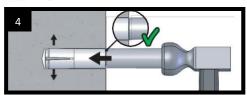

ANCHOR SELECTION

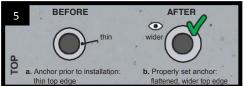
	Size	Part Number	Thread Size	Thread Depth	Drill (hole) dia.	Anchor Length	Approvals
	1/4"	DI-0014-1	1/4"-20 UNC	7/16"	3/8"	1"	1
	3/8"	DI-0012-1	3/8"-16 UNC	5/8"	1/2"	1-9/16"	FM/UL
Ī	1/2"	DI-0058-1	1/2"-13 UNC	3/4"	5/8"	2"	FM/UL

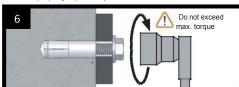


INSTALLATION SPECIFICATIONS

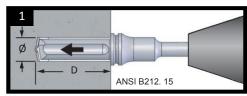

Manual Installation


Drill hole into the base material to the depth of embedment required, using a Proton SDS + Stop Drill, or a standard drill bit.


Clean the hole with compressed air or a proper dust removal tool to make sure there is no residual dust inside.

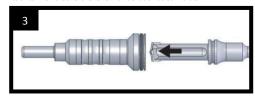

Proton Manual Setting Tool must be used to set the anchor by driving the tool with a sufficient number of hammer blows.

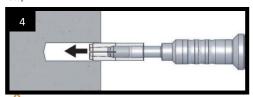
The anchor is set when the bottom of the setting tool makes full contact with the top surface of the anchor. Details on figure 5.

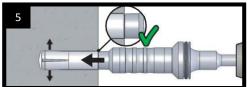


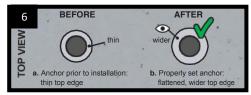
WARNING: Check that the anchor is properly set - the top edge of the anchor will become wider and flatter as a result of a setting mark of a properly set anchor. If the anchor has not been set properly repeat steps 1 to 4.

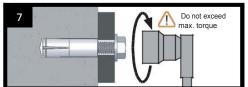
Position fixture, insert bolt and tighten until the tread engages properly. Refer to Installation Specification table for proper torque value (p.3).


Installation Using Proton SCX Drilling and Anchoring System®

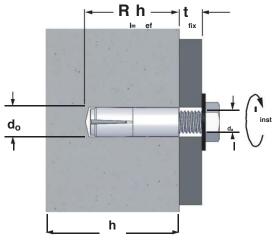

Drill hole into the base material to the depth of embedment required.

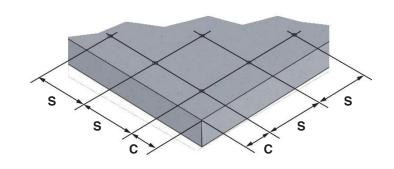

Clean the hole with compressed air or a proper dust removal tool to make sure there is no residual dust inside.


Connect the Proton Snap Fit Setting Tool to the Proton SCX Stop Drill.


Proton Snap Fit Setting Tool must be used to expand the anchor.

The anchor is set when the bottom of the setting tool makes full contact with the top surface of the anchor. Details on figure 6.


WARNING: Check that the anchor is properly set - the top edge of the anchor will become wider and flatter as a result of a setting mark of a properly set anchor. If the anchor has not been set properly repeat steps 1 to 5.



Position fixture, insert bolt and tighten until the tread engages properly. Refer to Installation Specification table for proper torque value (p.3).

INSTALLATION SPECIFICATIONS

Details	Δ	nchor size (inch	1)
Details	1/4	3/8	1/2
Anchor size/internal thread diameter d₄(inch)	0.250	0.375	0.500
Drill bit/hole nominal diameter d₀ (inch)	0.375	0.500	0.625
Effective embedment/hole depth hef/hi (inch)	1	1-9/16	2
Critical anchor spacing for 100% performance scr (inch)	3-1/2	5-1/2	7
Minimum anchor spacing for 50% performance smin (inch)	2	3	4
Critical edge distance for 100% performance ccr (inch)	3	4-1/2	6
Minimum edge distance c _{min} (inch)	2	3	4
Minimum base material thickness h (inch)	3	3-1/2	4
Maximum installation torque T _{inst} (ft x lbf)	4	11	22
Usable thread length (inch)	7/16	5/8	3/4

Notes:

RECOMMENDED SDS+ ROTARY HAMMER DRILL SPECIFICATIONS

Anchor size	Concrete Compressive	Rated Tool Impact Energy -	Recommended Rotary H Model Numbe	
(inch)	Strength (psi)	Suggested Range (ft-lbs)	Milwaukee Cordless / Power	Bosh
3/8	2500	2.6 - 3.1	2715-22 M18 1-1/8"	RH328VC 1-1/8"
3/0	4000	2.6 - 3.3	2715-22 M18 1-1/8"	RH328VC 1-1/8"
1/2	2500	3.1 - 3.3	5268-21 M28 Fuel 1-1/8"	RH328VC 1-1/4"
1/2	4000	3.1 - 3.3	5268-21 M28 Fuel 1-1/8"	RH328VC 1-1/4"

Notes: The above rotary hammer tools are a suggestion. Use of other equivalent rotary hammer tools is acceptable. Local concrete conditions and rotary hammer impact efficiency vary greatly. Please verify that the tool impact energy is sufficient to fully set the internal plug of the Proton drop-in anchor prior using the system.

[•] Carbide tipped drill bits shall conform to ANSI B 212.15.

[•] Do not exceed the maximum installation torque.

DESIGN DATA

ALLOWABLE AND ULTIMATE LOADS Normal weight stone aggregate concrete

			2500 psi (17.2	Mpa)					
Anchor	Embedment	Tension		Shear		Tension		Shear	
size (inch)	(inch)	Ultimate	Allowable	Ultimate	Allowable	Ultimate	Allowable	Ultimate	Allowable
(IIICII)		lbs (kN)	lbs (kN)	lbs (kN)	lbs (kN)	lbs (kN)	lbs (kN)	lbs (kN)	lbs (kN)
1/4	1	1830 (8.2)	450 (2.0)	2070 (9.2)	510 (2.3)	2290 (10.2)	570 (2.6)	1130 (5.1)	280 (1.3)
3/8	1-9/16	3152 (14.0)	788 (3.5)	4780 (21.3)	1190 (5.3)	5320 (23.7)	1330 (5.9)	5420 (24.1)	1350 (6.0)
1/2	2	4370 (19.4)	1090 (4.9)	5380 (23.9)	1340 (6.0)	6690 (29.8)	1670 (7.4)	7840 (34.9)	1960 (8.7)

Notes: The allowable and ultimate shear values are based on SAE Grade 5 (Fu=120ksi) bolts.

LOAD ADJUSTMENT FACTORS FOR NORMAL-WEIGHT CONCRETE Tension & Shear Loads

This equation for combining tension and shear loads must be used when anchors are subject to both tension and shear loading.					
$(F_a/F_t)^{5/3} + (V_a/V_s)^{5/3} \le 1$					
F _a = applied tension load V _a = applied shear load					
F _t = allowable tension load V _s = allowable shear load					

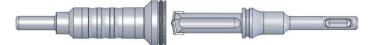
Ultimate Load capacities must be reduced by a minimum safety factor 4.0 or greater to determine allowable working load. Allowable load capacities calculated are using a safety factor 4.0 Allowable loads are determined by using linear interpolation for intermediate compressive strengths.

Due to seismic and wind forces Allowable loads may not be Increased for short term loading.

When using bolts with lower tensile strength steel failure must be considered.

Load Adjustment Factors for Anchor Spacing Tension					
	and Shea	ır Loads			
Spacing (s)	An	chor size (inch	es)		
(inches)	1/4	3/8	1/2		
2.0	0.50				
2.5	0.67				
3.0	0.83	0.50			
3.5	1.00	0.58			
4.0		0.69	0.50		
4.5		0.79	0.58		
5.0		0.90	0.67		
5.5		1.00	0.75		
6.0			0.83		
6.5			0.92		
7.0			1.00		

Load Adjustment Factors for Edge Distance							
Edge Distance (c)		Tension Loads			Shear Loads	·	
(inches)	A	Anchor size (inches)			Anchor size (inches)		
	1/4	3/8	1/2	1/4	3/8	1/2	
2.0	0.80			0.65			
2.5	0.90			0.83			
3.0	1.00	0.80		1.00	0.65		
3.5		0.87			0.77		
4.0		0.94	0.80		0.89	0.65	
4.5		1.00	0.85		1.00	0.74	
5.0			0.90			0.83	
5.5			0.95			0.91	
6.0			1.00			1.00	


Notes: Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

PRODUCT DATA

Proton SDS + Stop Drill Snap Fit Setting Tool: Full Kit

SKU	Anchor	Setting Tool	Drill bit	Setting Pin	Qua	ntity
Model #	Rod Size	Setting 100i	diameter	Length	Box	Carton
554035	3/8"	3/8"	1/2"	21/32"	1	20
554042	1/2"	1/2"	5/8"	1-7/32"	1	20

Proton Snap Fit Setting Tool Only

SKU	Anchor	Setting Tool	Setting Pin	Quantity	
Model #	Rod Size	Setting room	Length	Box	Carton
554059	3/8"	3/8"	21/32"	1	20
554066	1/2"	1/2"	1-7/32"	1	20

Proton Hand Setting Tool

SKU	Anchor	Catting Tool	Setting Pin	Qua	ntity
Model #	Rod Size	Setting Tool	Length	Box	Carton
554141	1/4"	1/4"	19/32"	1	20
554158	3/8"	3/8"	21/32"	1	20
554165	1/2"	1/2"	1-7/32"	1	20

Proton SDS + Stop Drill (SCX)

SKU	Drill bit		Quantity		
Model #	diameter	Вох	Carton		
554073	1/2	1	20		
554080	5/8	1	20		

Proton II SDS + Stop Drill

SKU	Drill bit	Quantity	
Model #	diameter	Box	Carton
554097	3/8"	1	20
554103	1/2"	1	20
554127	5/8"	1	20

Proton DI Proton Anchor

SKU	Anchor	Rolt Threads Bodyl ength	Thread	Quantity			
Model #	Rod size		Bolt Threads	BodyLength	length	Вох	Carton
554004	1/4"	3/8"	1/4"-20 UNC	1"	7/16"	100	2000
554011	3/8"	1/2"	3/8"-16 UNC	1-9/16"	5/8"	50	1000
554028	1/2"	5/8"	1/2"-13 UNC	2"	3/4"	50	500

